Physicochemical and functional parameters of Cochlospermum vitifolium (bototo) gum exudate

Maritza Coromoto Martínez, Antonio José Vera, Juan Carlos Parra, Olga Beltrán, Angel Morillo



The physicochemical parameters of Cochlospermum vitifolium they were evaluated and were linked to certain functional properties of industrial interest. The physicochemical parameters were determined by the classic methodology used for carbohydrates and the functional properties, as reported in the literature. The results obtained showed that the gum object of this study is low soluble in water, which corresponds with relatively high values of swelling indexes and water absorption capacity. Also, the intrinsic viscosity of the C. vitifolium exudate was related to a high molar mass, in the order of 106. Its emulsifying capacity is high, which is attributed to hydrophobic groups present in its structure. The gum gels at a minimum concentration, similar to that of the gum karaya (4.5%), but the gel that forms agglomerates, it is not uniform. The C. vitifolium gum exhibits important physicochemical and functional parameters which could serve as a criterion for testing its use in various industries.


Bixaceae; gum; polysaccharide; SEM; MALLS

Full Text:



Anderson, D.M.W. and Cree, G.M. (1968) The structure of the gum from Acacia nubica Benth. Carbohydrate Research. 57: 215-221.

Barham, D. & Trinder, P. (1972) An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst, .97: 142-145.

Beltrán, O., León de Pinto, G., Martínez, M & Rincón, F. (2005) Comparación de los datos analíticos de las gomas de Acacia macracantha, Acacia tortuosa y otras Gummiferae. Afinidad, 62: 237-241.

Beuchat, L. (1977). Functional and electrophoretic characteristics of to succinylated peanut flour proteins. Journal of Agricultural and Food Chemistry, 25: 258-263.

Biswas, G.R., Das, U., & Biswas., S. (2014) Gum karaya, a release modifier employed in the formulation of matrix granules containing amoxicillin trihydrate as a model drug. International Journal of Research in Pharmaceutical Sciences, 5: 124-131.

Blumenkrantz, K., & Asboe-Hansen, G. (1983) New method for quantitative determination of uronic acids. Analytical Biochemistry, 54: 484-489

Coffmann, C.W. & García, W.W. (1977) Functional properties and aminoacid composition of a protein isolate from mung bean flour. Journal of Food Technology. 12: 473-484.

El Kader, D.A., Molina, E., Colina, G., Montero, K., & León de Pinto G (2003) Cationic composition and the tannin content of five gums from Venezuelan Mimosaceae species. Food Hydrocolloids, 17: 251-253.

Girotra, P., & Kumar, S. (2013) Optimization for colon targeted delivery of katira gum matrix tablets containing Azathioprine. International Journal of Pharmaceutical Sciences and Drug Research, 5: 133-140.

Hokche, O., Berry, P., & Hubber, O. (2008) Nuevo catálogo de la flora vascular de Venezuela. Caracas: Fundación Instituto Botánico de Venezuela “Dr. Tobías Laser.

Janaki, B., & Sashidhar, R.B. (2000) Subchronic (90-day) toxic rats fed gum kondagogu (Cochlospermum gossypium). Food and Chemical Toxicology, 38: 523-534.

Janaki, B., & Sashidhar, R.B. (1998) Physochemical analysis of gum kondagogu (Cochlospermum gossypium): a potential food additive. Food Chemistry, 61: 231-236.

Jayapala, K., Mohan, K., & Gaikwad, S.E. (2011) Preliminary phytochemical standardization of tree exudates from India: Gum kondagogu and gum ghatti. Research Journal of Pharmaceutical Biological & Chemical Sciences. 2: 1023-1034.

Kumar, A., Panner, R., & Sivakumar, T. (2010) Isolation, characterization and formulation properties of a new plant gum obtained from mangifera indica. Indian Journal of Pharmaceutical and Biomedical. Reearch, 2: 35-41.

Le Cerf, D., Irinei, F. & Miller, G. (1990) Solution properties of gum exudates from Sterculia urens (karaya gum). Carbohydate Polymers, 13: 375-386.

López-Franco, Y., Goycochea, FM., Valdez, H.A., & Calderón de La Barca, A.M. (2006) Goma de Mezquita: una alternativa de uso industrial. Interciencia, 31(3):183-189

Mateen, A., Hussain, S., Rehman, S., Mahmood, B., Aslam, M., Rashid, A., Sohail., M., Farooq, M. & Ahmed, J. (2012) Suitably of various plant derived gelling agents as agar substitute in microbiological growth media. African Journal of Biotechnology, 11: 10362-10367.

Morrison, R.T., & Boyd, R.N. (1976) Química Orgánica. (3rd ed.) Boston: Fondo Educativo Americano.

Naidu, V.G.M., Madhusudhana, R.B., Sashidhar, R.B., Ramakrishna, S., Khar, R.K., Ahmed, F.J., & Diwan, P.V. (2009) Polyelectrolyte complexex of gum kondagogu and chitosan as dichlofenac carriers. Carbohydrate Polymers, 76: 464-471.

Neto, N., NarainSilvia, J.B. & Bora, P.S. (2001) Functional properties of raw and heat-processed cashew nut (Anacardium occidentale) kernel protein isolate Nahrung, 45: 258-262.

Ohwoauaworhua, F.O. & Adelakun, T.A. (2005) Some physical characteristics of microcrystalline cellulose obtained from raw cotton of Cochlospermum planchoni. Tropical Journal of Pharmaceutical. Research, 4: 1-7.

Ojha, A.K., Maiti, D., Chandra, K., Mondai, S., Roy, D., Grosh, K. & Islam, S. (2008) Structural assignment of a heteropolysaccharide isolated from the gum of Cochlospermum religiosum (katira gum). Carbohydrate Research, 343: 1222-1231.

Oliveira, J.D.., Silva, D.A., de Paula, R.C.M. Feitosa, J.P.A. & Paula, H.C.B. (2001) Composition and effect of salt on rheological and gelation properties of Enterolobium contortisilliquuum gum exudate. International Journal of Biological Macromolecules. 29: 35-44.

Pasquel, A. (2001) Gomas: una aproximación a la industria de alimentos. Revista Amazónica de Investigación Alimentaria. 1: 1-8

Ruhidas, B., Naskar, D., Banerjee, S., Karan, S. and Kumar, T. (2016) Evaluation of gum katira as a model sustained release adjuvant in the preparation of etodolac loaded microsphere. Indian Journal of Pharmaceutical Education and Research, 50 (1): 146-158.

Sonnergaard, J.M. (1999). A critical evaluation of the Heckel equation. International Journal of Pharmaceutics, 193: 63-71

Vinod, V.T.P., Sashihdar, R.B., & Sukumar AA (2010) Competitive and sorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): a natural hydrocolloid. Colloids and surfaces B: Biointerfaces, 75: 490-495.

Vinod, V.T.P., & Sashidhar, R.B. (2010) Surface, morphology, chemical & structural assignment of gum kondagogu (Cochlospermum gossypium DC): and exudate tree gum of India. Indian Journal of Natural Products and Resources, 1: 181-182.

Vinod, V.T.P., Sashidhar, R.B., & Sreedhar, B. (2010) Biosorption of nickel and chromium from aqueous solutions by gum kondagogu (Cochlospermum gossypium): a carbohydrate polymer . Journal of Hazardaous Material, 178: 851-860.

Vinod, V.T.P., Sashidhar, R.B., Suresh, K.I., Rao, R., Vijaya, U.V.R., & Prabhakar, T. (2008) Morphological physicochemical and structural characterization of gum kondagogu (Cochlospermum gossypium): a tree gum from India. Food Hydrocolloids, 22: 899-915.

Yadav, M., Igartuburu, J.M., Yan, Y. & Nothnangel, E. (2007) Chemical investigation of the structural basis of the emulsifying activity of gum Arabic. Food Hydrocolloids, 21: 297-308.

Yusuf, A.A., Ayedun, H. & Lagunleko, A.G.O. (2007) Proximate composition and functional properties of modified Mucuna sloanei starch. ASSET Series B, 6: 143-150.

Yusuf, A.K. (2011) Studies on some physicochemical properties of the plant gum exudates of Acacia senegal (DAKWARA), Acacia siberiana (FARAR KAYA) and Acacia nilotica (BAGARUWA). Journal of Research in National Development, 10-17.

Copyright (c) 2017 International Journal of Food and Allied Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2014 All Rights Reserved International Journal of Food Science and Allied Sciences
Powered by:
Institute of Food Science and Nutrition,
Bahauddin Zakariya University, Multan-Pakistan